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Abstract. We study analytically and numerically the action of a constant force on the propagation of
kinks in the ¢* and sine-Gordon systems, with and without dissipation. We specifically investigate the
relation of the external force with the oscillations of the kink width due to excitation of its internal mode
or quasimode. We demonstrate that both dc force and dissipation, either jointly or separately, damp the
oscillations of the kink width. We further prove that, in contrast to earlier predictions, those oscillations
can only arise if we use a distorted kink as initial condition for the evolution. Finally, we show that for the
¢* system the oscillations of the kink width come from the excitation of its internal mode, whereas in the
sG equation they originate in the excitation of the lowest radiational modes and an internal mode induced
by the discreteness of the numerical simulations.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems — 63.20.Ry Anharmonic lattice
modes — 74.50.+r Proximity effects, weak links, tunneling phenomena, and Josephson effects — 85.25.Cp

Josephson devices

1 Introduction

More than thirty years after the concept of soliton entered
physics, their dynamics, as well as that of other coherent
structures emerging from nonlinearity, is still ridden with
surprising new phenomena [1]. Even though some facts
have been well established — for instance, the particle-
like behavior of many nonlinear coherent structures in the
presence of a variety of perturbations [2,3] — other fea-
tures are much worse understood. Prominent among the
latter is the interplay of the translational motion of a co-
herent structure with its internal degrees of freedom or
modes: First found in several pioneering works [4] deal-
ing with resonant exchange of energy between solitary
waves through their internal mode, the importance of this
possible coupling has not been studied in depth until the
last few years. Indeed, only recently it has been realized
that the coupling between translation and internal modes
becomes the governing physical factor in many contexts,
such as interactions with inhomogeneities [5], with ther-
mal noise [6] or with external drivings [7], to name a few.
Furthermore, it has also been shown that even in systems
where the relevant coherent structure does not have in-
ternal modes, these can arise due to the presence of very
small perturbations of different types [8,9]; hence their
importance and generality.

A specific class of models where internal modes are
relevant is the nonlinear Klein-Gordon equation, the kink
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solitary waves of the sine-Gordon (sG) and ¢* equation
being most interesting because of their very many phys-
ical applications (see [1] and references therein). In the
early eighties, Rice introduced [10] a variational approach
to deal with internal modes of nonlinear Klein-Gordon
kinks. Interestingly, whereas Rice’s approach yielded very
accurate results for the internal mode of ¢* kinks, it also
predicted an internal mode for sG kinks. The latter re-
sult was quite striking, since linear stability analysis of sG
kinks does not show any internal, localized mode, and, in
addition, the putative internal mode of Rice’s approach
turned out to be within the phonon (linear radiation
modes) band. Nevertheless, a few years later Boesch and
Willis reported [11] numerical observations of long-lived
oscillations of the width of sG kinks (which they termed
“quasimode”) which they related to Rice’s mode. More-
over, Majernikova, Gaididei and Braun theoretically pre-
dicted [12], by a collective coordinate (CC) approach, that
the internal mode of sG and ¢* kinks should be observed
in the dynamics of kinks driven by a constant, external
force; however, they did not carry out numerical simula-
tions to check their results. After a decade of conjectures,
we recently showed [13] that sG kinks do not have any
internal mode of the kind predicted by Rice and that the
observations in [11] were in fact due to the lowest phonon
mode. It is then natural to ask whether or not the theoret-
ical results of [12] compare well with the dynamics of kinks
in simulations of the full partial differential equations. In
this paper, we set out to clarify this point beginning by
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looking again at the CC calculations in [12]. In Section 2
we obtain the equations for the evolution of the position
and width of sG and ¢* kinks and analyze them for ar-
bitrary initial conditions, noting that the results in [12]
are limited to a specific choice of the initial values and to
the dissipation-free case. In Section 3 we summarize the
details of our numerical simulation procedure, as well as
the computational definitions of the kink width. Section 4
is devoted to the comparison of the analytical and numer-
ical results, both with and without dissipation. Finally,
our conclusions are presented in Section 5.

2 Collective coordinate approach

As announced above, we study kink propagation in the ¢*
and sine-Gordon models when perturbed by a constant
force €, and damping with coefficient (3,

dU
T Bt — €, (1)
where U(¢) = 1 —cos(¢) for sG or U(¢) = (¢* —1)?/4 for
¢*. As in previous works [10,12], to address this problem
we begin by assuming that the solution of this equation
has the form

¢tt - ¢a:a: =

X(t)>’ @)

o, 1) = do (W

where ¢ is the static kink solution of the unperturbed ¢*
or sG equations (¢ = 0 and § = 0 in Eq. (1)), and X (t)
and [(t) represent the position of the center of the kink
and its width, respectively. In order to find the equations
governing the evolution of the two CC X (t) and I(t), we
can either use a projection method proposed in [14] (see
also [7]), or the variations of the energy and the momen-
tum of the system [15]. Introducing the momentum of the
perturbed system,

X(t)
It)’

where My is the rest energy and [y is the width of the
static kink, both procedures lead straightforwardly to

P(t) = Molo (3)

dP
— = —0P 4
3 = PPt (4)
q being the kink topological charge, and
. .. . 12 P2
2 - 20~ 28] = 5 |14 1| ~ 1.
° il = 1+ v ®)
The parameters in these equations are, ¢ = 2, a =

(m2 — 6)/12, My = 4/(3lp), and Iy = /2 for ¢* kinks,
and ¢ = 27, a = w2 /12, My = 8, and [y = 1 for sG kinks.
Integrating equation (4) when 3 = 0 we find

Py = M5O

P(t) = P(0) + get, z
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which is linear in ¢, whereas when 3 # 0,

P(t) = P(0) exp (—Bt) — % lexp(—88) = 1], (7)

i.e., P(t) decreases exponentially in time up to the value
ge/B. We thus have the well known result [2] that kinks
are accelerated by the constant force, e, and decelerated
by the dissipation, 3; when both are present, kinks achieve
an asymptotic, steady velocity arising from the balance of
the two forces.

We now move to the equation for the width of the kink,
I(t), given by equation (5). To solve it, we follow [12] and
change variables according to I(t) = g%(t), which gives

1

G+ By + (%) L+ P o= 1 ®)

with the Rice frequency [10] 2r = 1/(v/alp). We have not
been able to solve the dissipative case, 8 # 0, and there-
fore we will numerically integrate equation (8) in order to
compare with the simulation results in Section 4. How-
ever, the dissipation-free case can be solved. We treat this
case in detail in the following subsection.

2.1 Solution of the dissipation-free problem
When (8 = 0, we have an Ermakov-type equation [16,17],

2
§+<92+52[t+%}>g— 1 (9)

 dagd’

where 2 = 2z /2 and 3 = qef2/My, with initial conditions

1(0)

=1, §(0)= ENA (10)

4/1 — X(0)? is the initial Lorentz-contracted
kink width. The solution of this equation is given by [17]

where I, = [

1

g(t) = \/U%(t) + W”ﬁ(ﬂ» (11)

where the nonzero constant W = vy ()02 (t) — 01 (t)v2(t) is
the Wronskian and the functions vy, (t) fulfill

2
U + ([_224-52 {t—l—?] )vm:O, m=1,2,
_lo

=2

02(0) = const. # 0.

U1 (0) = \/Ea

’UQ(O) = 0,

01(0)
(12)

With a new change of variables 7 and Y;,, given by [12]

T:l[t_P “”]2, Yiu(r) = 7/ %(r),  (13)

2 qe
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Equation (12) is nothing but the Whittaker equation [18],

2? 3

Yam+ |+ -+ s

Yi(r) =0.  (14)

The independent solutions of (14) are the Whittaker func-
tions [19] Vi, (1) = M, 11/4(2iB7), where r = —i£2%/(43).
Therefore, the solution of equation (12) can be written as
the linear superposition of those functions,

Um, (t) 1/4 A Mr 1/4(21ﬁ7’)

+BmMr,—1/4(2iBT):|ﬂ (15)
where the constants A,, and B,,,
= ITO [\/— r—1/4 2157'0)
Vi ge 1(0)
) (4@‘13() N ) Mrcyu@Pl
B o 17—0 |: \/_ 1/4 QIﬁTO
Vi ge 1(0) =
+ <4\/% ~ PO 2\/E> Mr,1/4(2157-0):|7
L 1/4 . ~
A, 1% |:Pq(0)OQ(O)MT7_1/4(2iﬁTO):|7
1/ -
B = T [t 0 a25m)|.
1[P0)]?
=g o], (16)

have been calculated from the initial conditions. This re-
sult generalizes that in [12], which was obtained for a re-
stricted set of initial conditions, namely [(0) was fixed to
lop after arbitrarily setting A2 = By = 0 (see [12]). There-
fore, the result (15) with constants given by equation (16)
is obtained here for the first time with full generality.

Taking into account the relations (15) and (16), we can
finally write the solution for the width of the kink as

U0) = (1) + B0, W = Viia(0). (1)

In the particular case of zero initial velocity, a simpler
expression can be obtained: equations (15) and (16) reduce
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then to
vnlt) = =75 [A M, /4(Bt%) +
+ B,,LMT7,1/4(iBt2):|,
RO
Al \/E(IB)3/4)
Vi
5=
_ 12(0)
A= g
Bo= 0 (18)

We can now use equation (6) for the momentum and equa-
tion (17) (Eq. (18) when the initial velocity is zero) along
with the relationship X (£) = P(t)I(t)/Molo to find an an-
alytical expression for the kink velocity as predicted by
the CC approach. However, from that expression we have
not been able to find analytically X (¢), and therefore in
Section 4 we compare the evolution of the kink width and
velocity (and not the evolution of the kink position) with
the numerical simulations of the full partial differential
equations.

3 Numerical simulation details

In order to check our CC results, we will integrate numeri-
cally equation (1), corresponding to the perturbed ¢* and
sG models, using the Strauss-Vazquez [20] method. With
this energy-conserving scheme we can accurately compute
the center and the velocity of the kink through the energy
and the momentum of the system [21]. To obtain the nu-
merical values for the kink center we have also used as an
additional test the method proposed in [22] for the over-
damped sG system, in which the kink center is defined
as the point Xy, at which ¢(Xnum,t) = 7 for the sG
(¢(Xnum,t) = 0 for ¢*). In order to compute X,um, we
first find the points z(n) and z(n + 1) of the computa-
tional grid such that ¢" < 7 and ¢" 1 > 7 for sG (¢" <0
and ¢"*t1 > 0 for ¢*), and we then interpolate linearly
between n and n + 1, thus finding the numerical value of
the kink center. Once we have obtained X,um(t), we can
compute the kink width, l,,m(¢), finding the value of [(t)
that minimizes the expression

N
D 10" (1) = Dlheo(DI” (19)
where
n _ x(n) B Xﬂum(t)
Glolt) = tauy | 2] o)
for ¢*, and

60 (t) = darctan [exp (WH (21)
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for sG. In the above equations, ¢™(t) stands for the numer-
ical solution of equation (1), whereas ¢} ., (t) represents
the discrete version of the analytical static kink solution,
centered at Xpum(t) with width I(¢). In order to minimize
equation (19) we let I(t) vary between liin and lyax, with
a precision of 0.001. We stress that, to find [(¢), equa-
tion (19) is most appropriate to compare with the CC
results of the last section. Finally, we have used X,um(t)
to calculate the velocity of the kink center

Xnurn(t + At) - Xnum(t>
At

With respect to initial conditions, we have started from
kinks initially centered at X (0), with width {(0) and initial

velocity X (0), i.e.,

Xnum (t) -

(22)

¢"(0) = tanh [M} |

1(0)
JOR !
T a2 [20) — X(0)
cosh {T}
u(0)  z(n) — X(0):
g [ [(0) 12(0) l<0>] . (23)
for ¢*, and
¢"(0) = darctan (exp V(n)z@ )X(O)D |
2
i (0) =
x(n) — X(0)
cosh [ 0) ]
u(0)  x(n) — X(0);
g [_1(0) RO 1(0)}, (24)

for sG, respectively. It is important to notice that in equa-
tions (23, 24) we can impose [(0) # I and [(0) # 0, giving
rise to a distorted initial kink; we will see below that this
is indeed the most relevant situation for the appearance
of kink width oscillations.

The parameters of the discretizations of equation (1)
are Az = 0.1,0.05, At = 0.01,0.005 and 2 L = 100, 200.
Furthermore, we have varied e between 0.001 and 0.02. For
these values of €, we have found that [(0) and [(0) should
not differ too much from Is and 0: Indeed, for 1(0) =[5+ 1
or [(0) = 1 we observe radiation in the system, and even
breathers or kink-antikink pairs can spontaneously appear.
Therefore, we stick to smaller deviations which do not
modify the single kink propagation scenario.

4 Results

We begin by comparing the predictions of equations (15—
18) for the evolution of the kink width under a constant
force and without dissipation. In this context, it is impor-
tant to recall that the kink width, I(¢), depends not only
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on the initial kink velocity, X (0), and on the amplitude
of the external force, €, but also on the initial conditions
1(0) and (0), which was not considered in [12] (they do
not have numerical results to compare with in any case),
hence the importance of exploring all possible choices for
1(0) and I(0). We present our results in the following man-
ner: In all cases we have taken X(0) = 0 and there are
two plots for the same initial conditions in each figure,
one corresponding to ¢* (upper panel) and the other to
sG (lower panel). In all figures, solid lines represent an-
alytical results obtained from the CC theory and dotted
lines correspond to numerical simulations.

Figure 1 presents results for driven kink propagation
with initial conditions given by an undistorted kink shape.
At the CC level, this means that 1(0) = I, and [(0) = 0. As
may be seen, the agreement between the theoretical ap-
proach and the numerical results is excellent, which sup-
ports the appropriateness of our definitions for the numer-
ical kink center and width. In the plots, we see that in both
systems the kink width (left figures) does not oscillate, as
predicted by the CC approach. In this figure we observe
that [(t) decreases, while, at the same time, the velocity of
the kink center increases due to the action of the external
force (right figures). Note that the numerically computed
velocities are overimposed to the solid lines of the theo-
retical prediction. The small oscillations and irregularities
observed in Figure 1 on the left are a consequence of the
numerical discretization (notice the smallness of the ver-
tical scale, of the order of the spatial integration step);
we have verified that when we decrease the values of Ax
and At, the amplitude of those oscillations decreases as
well. Finally, we observe that for the same final time of
integration, the velocity of the center for the ¢* kink is al-
most equal to 0.4, whereas the corresponding velocity for
the sG kink is close to 0.15. These velocities, computed
numerically, agree very well with those predicted by the
CC method.

If we now start our simulations from a distorted kink,
choosing, i.e., I(0) # I or/and [(0) # 0, the results change
qualitatively, as shown in Figures 2 and 3, where it is clear
that in this case [(t) does oscillate. Results are similar for

other values for [(0) and [(0) with the above caveat that
they should not differ too much from I; and 0, respec-
tively. For the ¢* kink, the amplitude of l,um(t) is some-
what smaller than the prediction of the CC approach, and
it slowly decreases, although it seems to be an excitation
with a large lifetime. All in all, we can say that there is a
reasonable agreement between theory and simulations. On
the contrary, in the sG case, the oscillations of lyum () are
rapidly damped out, opposite to what we expected from
the analytical method. For better comparison, we have
used a discrete Fourier transform (DFT) to obtain the os-
cillation frequencies of I(t): the so computed frequency of
the behavior predicted by the CC approach (solid lines
in Figs. 2 and 3) yields woc = 1.2568 for the ¢* case, to
be compared to the Rice value 25 = 1.2452. It is then
natural to associate the oscillations of the ¢* kink width
to the frequency of the internal mode, (2, = 1.2247, and
indeed, the result obtained from the numerical simulation
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Fig. 1. Left: Evolution of the kink width, [(¢), theoretically obtained from equations (17, 18) (solid lines), and lnum(¢), computed
from the numerical simulations (dotted lines) of the corresponding perturbed ¢* (upper panel) and sG equations (lower panel).
Both systems are perturbed by a constant force ¢ = 0.002, and the initial parameters are 1(0) = I, [(0) = 0, and X (0) = 0.
Right: Evolution of the velocity of the kink center of the ¢* (upper) and sG (lower) kinks. The theoretical and numerical results
for the velocity overlap, their difference being negligible at this scale.

is w = 1.2177, very close to (2. We can then conclude
that what we see is the ¢* internal mode excitation en-
tirely due to the initial distortion: recall that no oscilla-
tions were seen when the simulation began with the un-
perturbed kink. The situation is totally different in the
sG case, for which DFT shows that l,um(¢) oscillates with
a frequency w = 1.0073, whereas the frequency of the
CC prediction is woe = 1.1312. We thus see that the os-
cillation frequency is much closer to the lowest phonon
mode wy = 4/1+ (27/100)2 = 1.0019 than to the Rice
frequency 2r = 1.1026. It thus becomes evident that the
behavior of the sG kink is completely different from that
of the ¢* kink, which is an indication that the internal
mode of the latter is absent in the former. In addition,
Figure 4 shows that when we increase the external force
the oscillations of lyum(t) are damped more rapidly than
in the theoretical prediction for I(t), for both ¢* and sG
kinks. This occurs because those larger values of € induce
the appearance of radiation in the system, to which the
kink loses its initial distortion energy more efficiently than

if this energy would only be damped out by the force. As
the CC method does not take radiation into account, it
is obvious that its predictions cannot be accurate when
there is radiation excited in the system.

As we have seen, our results suggest that whereas the
¢* kink possesses an internal mode that is excited by ini-
tial distortions of its shape, the sG kink does not have
such a mode. In order to confirm this result, we turn to
the case when there are no forces in the system but we
start from a distorted kink ({(0) # s or/and I(0) # 0). In
this case, shown in Figure 5, DFT shows that the CC pre-
diction for I(t) oscillates exactly with the Rice frequency,
i.e., woc = f2g for both ¢* and sG. The plot makes clear
that the theoretical oscillations are very similar to the nu-
merically simulated ones for the ¢* kink, where in this
case lnum(t) oscillates with w = 1.2272, practically equal
to the internal mode frequency ;. The oscillations do
not decay even for large times, as shown in the upper
panel of Figure 6. No signatures of other frequencies are
found [23]. Again, the results are different for the sG kink:
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Fig. 2. Evolution of the kink width, I(¢), theoretically obtained
from equations (17, 18) (solid lines), and lnum(t), computed
from the numerical simulations (dotted lines) of the corre-
sponding perturbed ¢* (upper panel) and sG equations (lower
panel). Both systems are perturbed by a force ¢ = 0.001, and
the initial parameters are [(0) =I5, [(0) = 0.1, and X(0) = 0.

In Figure 5 we see that l,um(¢) oscillates not only with a
different frequency, w = 1.0058, but also that the oscilla-
tions are rapidly damped. Note that the numerical w is
approximately equal to the lowest phonon frequency w.
The evolution of I, (t) for larger times leads to the ap-
pearance of more frequencies (see Fig. 6): wg = 0.9983,
w; = 1.0034, 0, = 1.0083, w3 = 1.0184, @y = 1.0335,
ws = 1.0511, wg = 1.0712 and w; = 1.0963. All the w;,
except wy, are related with the low-lying phonon modes:
w; = 1.0019, we = 1.0079, ws = 1.0176, wy = 1.0311,
ws = 1.0482, wg = 1.0687, wy = 1.0924. As for wy, it
is is very close to the frequency of the internal mode
induced by discreteness, analytically calculated in [9]:,
w; ~ /1—(4/2025)(Az)* = 0.999998 for Az = 0.05.
Therefore, we do not find any evidence of a quasimode or
any similar long-lived mode and, as the ¢* results show,
we would certainly have found it if it existed.

Our last results concern the effect of the dissipation in
the system, predicted by the CC method. As in this case
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Fig. 3. Evolution of the kink width, I(¢), theoretically obtained
from equations (17, 18) (solid lines), and lyum(t), computed
from the numerical simulations (dotted lines) of the corre-
sponding perturbed ¢* (upper panel) and sG equations (lower
panel). Both systems are perturbed by a force ¢ = 0.001, and
with 1(0) = I 4 0.1, [(0) = 0 and X (0) = 0.

we have not been able to solve the corresponding equa-
tions, we integrate numerically equation (5) with a 4-order
Runge-Kutta method [24] with At = 0.01,0.001; results
are the same in both cases, so we are confident that we are
correctly integrating the equation. The theoretical results
in the figures are represented for At = 0.001. In Figure 7
we see that the dissipation makes the amplitude of the os-
cillations of {(¢) rapidly decrease in time. For comparison,
note that we have chosen the same values of €, X(0), 1(0)

and [(0) as in Figure 4. We have also observed that if we
increase 3, the oscillations are damped even more rapidly.
Turning now to the full equations, let us recall that if we
introduce dissipation, S = 0.1 in this case, the radiation
almost disappears and therefore a better agreement with
the CC predictions is to be expected. Figure 7 shows that
this is indeed what occurs for the ¢* kink: we observe
that lnum(t) oscillates with a frequency w = 1.2177 ~ (2
while, simultaneously, the amplitude of these oscillations
decreases due to the dissipation of the system. For the sG
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Fig. 4. Evolution of the kink width, [(¢), theoretically obtained
from equations (17, 18) (solid lines), and lnum(t), computed
from the numerical simulations (dotted lines) of the corre-
sponding perturbed ¢? (upper panel) and sG equations (lower
panel). Both systems are perturbed by a force ¢ = 0.02, with
1(0) = I, [(0) = 0.1, and X (0) = 0.

model (lower panel) the oscillations of lyum(t) are smaller
than the predicted ones by the CC approach, and once
again if we observe that its frequency w = 1.0073, closer
to wy = 1.0019, so it is related neither with {2g nor with
a possible quasimode.

5 Conclusions

In this paper, we have studied analytically and numeri-
cally the behavior of ¢* and sG kinks subjected to con-
stant external forces and damping. Analytically, we have
developed a CC theory for the time evolution of the kink
center and width, obtaining the same equations of mo-
tion as in reference [12]. For the dissipation-free case, we
have found the exact solution of those equations for ar-
bitrary initial conditions, thus generalizing the partial re-
sults in [12], this being our first novel result. Afterwards,
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Fig. 5. Evolution of the kink width, [(¢), theoretically obtained
from equations (17, 18) (solid lines), and lnum(t), computed
from the numerical simulations (dotted lines) of the corre-
sponding perturbed ¢* (upper panel) and sG equations (lower
panel). Both systems are unperturbed, ¢ = 0, with 1(0) = I,
1(0) = 0.3, and X (0) = 0.

we have verified the theoretical predictions so obtained
by comparing them with numerical simulations, taking
proper care of computing correctly the magnitudes of in-
terest. Such comparison allowed us to establish some im-
portant conclusions which we summarize in what follows.

As we have seen, both the theoretical predictions and
the numerical simulations show that constant external
forces and dissipation, by themselves, are not able to ex-
cite any oscillation of the kink width. Furthermore, they
are not even needed to excite those oscillations: In the ab-
sence of any other perturbation in the system, i.e., in kink
propagation governed by the unperturbed sG or ¢* equa-
tion, an initial distortion of the kink width, either directly
or through its derivative, is enough to excite width oscilla-
tions. Hence, we believe that the earlier work [12] on this
subject, being formally correct, was somewhat mislead-
ing, as it suggested that the kink width oscillations were
caused by the perturbations we are considering. It is now
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in Figure 5.

clear that the effect of constant forces and damping is ex-
actly the opposite: They damp away the width oscillations
originated by the initial kink distortion.

For the ¢* kink, we have found that if they are let
to evolve from an initially distorted shape, they do expe-
rience shape oscillations with a frequency which, in the
absence of perturbations, is very close to the frequency of
the internal mode. Perturbations modify slightly this fre-
quency, but it remains close to that of the internal mode.
We have verified that these oscillations are very long lived,
and only after very long simulation times the combination
of numerical errors and discreteness induced radiation acts
on the width oscillations, making them decrease. In any
case, we have established clearly that all the phenomenol-
ogy discussed for the ¢* kink can be perfectly understood
and described in terms of its intrinsic internal mode.

Finally, for the sG kink, the situation is completely
different. The CC approach yields a very poor descrip-
tion of the numerically observed oscillations, which show
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Fig. 7. Evolution of the kink width, I(t), theoretically ob-
tained from equations (17, 18) (solid lines), and lnum(t), com-
puted from the numerical simulations (dotted lines) of the
corresponding perturbed ¢* (upper panel) and sG equations
(lower panel). Both systems are perturbed with a constant
force € = 0.02 and damping 8 = 0.1, with parameters [(0) = I,
[(0) = 0.1, and X(0) = 0.

a very different frequency, are damped away much more
rapidly, and in long runs end up involving several frequen-
cies. These results confirm our earlier claim [13] that sG
kinks do not possess any intrinsic internal mode (which
was the hypothesis of the CC approach, as suggested be-
fore [10,11]). This conclusion stems from the comparison
to the results of the ¢* kink: An initial distortion, with no
special amplitude and no frequency, directly excited the
internal mode, selecting only its frequency among the (in
principle) many possible ways to use the additional energy
of the distortion. However, in the sG case the same initial
distortion was only able to excite radiation modes. Inter-
estingly, we have also found evidence for the excitation
of the internal mode induced by the discreteness of the
simulation as calculated in [9]; this means that the proce-
dure does indeed excite every available internal mode, and
hence our claim that the sG kink does not have intrinsic
internal modes, which, if present, would have been set in
motion by the deformed initial conditions. This result fully
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agrees with the analysis presented in [13] for the case of
ac drivings, and we believe that it settles definitively the
question of the existence of quasimodes of sG kinks with
a negative answer.

Work at GISC (Leganés) has been supported by DGESIC
(Spain) grant PB96-0119 and by the grant No. BFM2000-
0006. Travel between Bayreuth and Madrid was supported by
“Acciones Integradas Hispano-Alemanas”, a joint program of
DAAD (Az. 314-Al) and DGESIC.

References

1.

2.

3.

A.C. Scott, Nonlinear Science (Oxford University, Oxford,
1999).

Yu.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763
(1989), and references therein.

A. Sénchez, A.R. Bishop, SIAM Review 40, 579 (1998),
and references therein.

M. Peyrard, D.K. Campbell, Physica D 9, 33 (1983); D.K.
Campbell, J.F. Schonfeld, C.A. Wingate, ibid. 9, 1 (1983);
D.K. Campbell, M. Peyrard, P. Sodano, ibid. 19, 165
(1986).

Yu.S. Kivshar, F. Zhang, L. Vazquez, Phys. Rev. Lett. 67,
1177 (1991); Phys. Rev. A 46, 5214 (1992).

Yu. Gaididei, T. Kamppeter, F.G. Mertens, A.R. Bishop,
Phys. Rev. B 59, 7010 (1999).

N.R. Quintero, A. Sédnchez, F.G. Mertens, Phys. Rev. Lett.
84, 871 (2000).

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

115

Yu.S. Kivshar, D.E. Pelinovsky, T. Cretegny, M. Peyrard,
Phys. Rev. Lett. 80, 5032 (1998).

P.G. Kevrekidis, C.K.R.T. Jones, Phys. Rev. E 61, 3114
(2000).

M.J. Rice, Phys. Rev. B 28, 3587 (1983).

R. Boesch, C.R. Willis, Phys. Rev. B 42, 2290 (1990).

E. Majernikova, Yu.B. Gaididei, O.M. Braun, Phys. Rev.
E 52, 1241 (1995).

N.R. Quintero, A. Sanchez, F.G. Mertens, Phys. Rev. E
62 Rapid Comm., R60 (2000).

F.G. Mertens, H.J. Schnitzer, A.R. Bishop, Phys. Rev. B
56, 2510 (1997).

N.R. Quintero, A. Sanchez, F.G. Mertens, Phys. Rev. E
62, 5695 (2000).

J.L. Reid, J.R. Ray, Z. Angew. Math. Mech. 64, 365
(1984).

E. Pinney, Proc. Amer. Math. Soc. 1, 681, (1950).

E.T. Whittaker, G.N. Watson, A course of Modern Anal-
ysis (Cambridge University Press, 1984).

A.W. Babister, Transcendental Functions Satisfying Non-
homogeneous Linear Differential Equations (MacMillan,

1967).
W.A. Strauss, L. Vazquez, J. Comput. Phys. 28, 271
(1978).
S. Jiménez, L. Vazquez, Appl. Math. Comput. 35, 61
(1990).

N.R. Quintero, A. Sanchez, F.G. Mertens, Phy. Rev. E,
60, 222 (1999).

Only for larger times, greather than ¢ ~ 10000, we have
seen that the amplitude of those oscillations decreases,
while the center of the kink begins to move, a phenomenon
that it is probably due to the accumulation of numerical
errors and the corresponding excitation of linear radiation
modes, or to higher order effects coupling the internal and
the translation mode through discreteness.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P.
Flannery, Numerical Recipes in Fortran, 2nd edn. (Cam-
bridge University Press, Cambridge, 1992).



